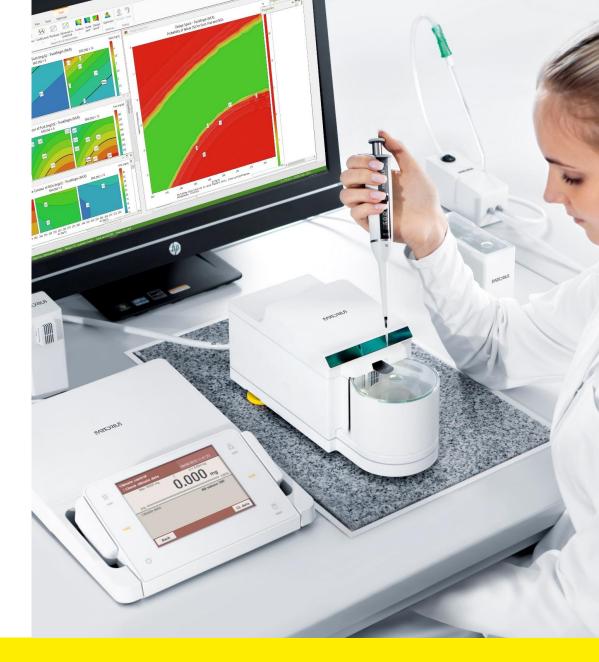

SVISCIS

Simplifying Progress

MODDE[®] 13 Release Letter

Henrik Widmark, March 2, 2021


Content

MODDE 13 – Optimization in focus

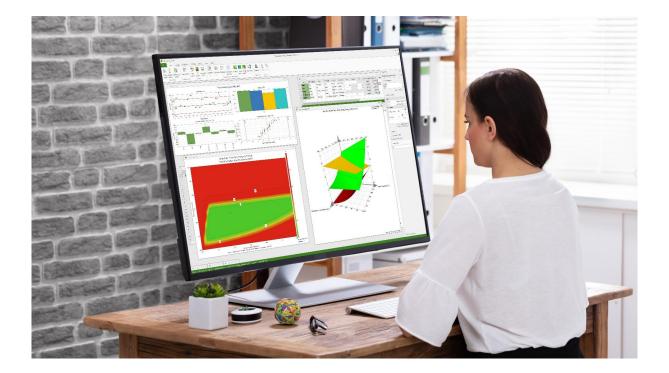
Resources

Courses

What's New

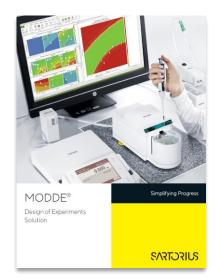
MODDE[®] 13 targeting optimization

Why Optimization?


- Industry trend towards process intensification and continuous manufacturing
- Sustainability and waste minimization
- Production cost and product risk mitigation
- Empower new users to benefit from powerful optimization tools in a guided workflow

MODDE[®] 13 Optimization made easy

- A MODDE[®] made to equip all users with powerful optimization in a easy to use workflow
- Required and Desired response criteria's to identify best setpoint within a designs space
- Simulation and what if based on process parameter characteristics
- Visual comparison between setpoint alternatives including user defined reference setpoint



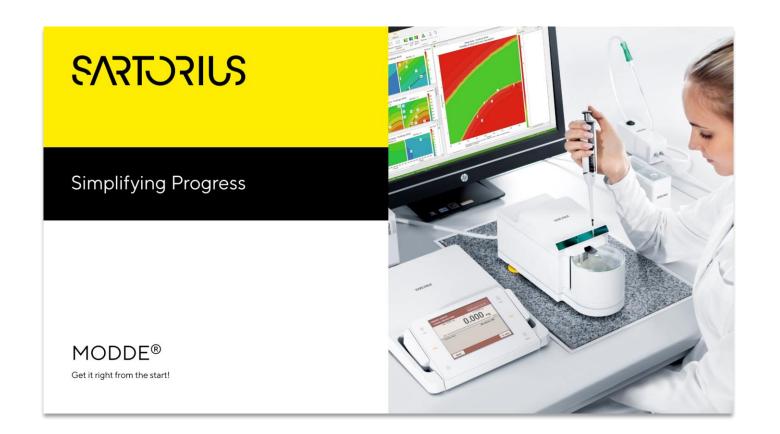
Resources

Product Sales Material

	S/	เราวรเ
MODDE		
Design of Experiments Solution		
		2 March 202
Fechnical features for MODDE 13		a Plantina da
Design of Experiments (DOE) is the most effective method to achieve product and optimization. MODDE® is a state-of-the-art design of experiments software package ingineers, and statisticians alike to help understand complex.processes and product HODDE ID.	that is used by	scientists.
Feature	MODDE Go	MODDE Pro
Design generation		
Design Wizard guides the design generation		
Four design objectives: Screening, System Characterization, Optimization (RSM), Robust Verification	•	•
Split objective		•
Up to 48 factors	•	•
Factor ranges (scaling) can be updated retroactively	•	•
Factor types: Quantitative, quantitative multilevel (24 levels) factors, qualitative factors (24 levels),	•	•
Factor types: Formulation (mixture), Filler		•
Constant and uncontrolled factors		•
Linear constraints on factors		•
Combination of process and formulation factors		•
128 responses possible		•
New response objective and condition		•
Linear, Log, Neglog, Logit, Exp and Power transformations of factors and responses	•	•
Detailed design power estimation		•
Optimal selection of replicated design points		•
A wide variety of classical designs: Fractional factorial, Full factorial (2 levels, 3 levels and mixed), L9, L8, L22, L36, CCF, CCC, CCO, Reduced CCF and CCC, Box Behnken, Rechtschaftfer designs in 2 and 3 levels, Dechiret designs, regular and Super saturated Plackett Burman designs. Definitive screening designs.	•	•
Axial (reduced, norma), and extended), Cubic centroid (Mod, Mod w/lace, Special and Full) designs		•
Reduced combinatorial designs (J2)		•
Generalized subset designs - optimal and balanced multilevel designs		•
Stability testing designs		•
Rectangular Experimental Designs for Multi-Unit Platforms, RED-MUP, Supports designs for up to 4 plates with sizes 8x12 and 16x24, with 32x48 size plate. Includes RED-MUP specific designs		•

What's New?

Why DOE and what makes MODDE[®] unique


MODDE leaflet

MODDE Features

https://sartorius.sharepoint.com/:f:/r/sites/O365_SE_UmetricsMarketing/Shared%20Documents/Product%20sales%20material/MODDE?csf=1&web=1&e=dQfzok

SDA Sales Kit

https://sartorius.sharepoint.com/:f:/r/sites/O365_SE_UmetricsMarketing/Shared%20Documents/Saleskit%20SSDA/1.Presentation?csf=1&web=1&e=S4xvla

Webinars

• Webinar series highlighting new features in MODDE 13

 STANDARD
 From Design of Experiments to Design Space Estimation
 TUE, MAR 23, 2021 ③ 03:00 PM - 04:00 PM CET

- Why DOE + Design Wizard
- Analysis Wizard
- Optimization Wizard
- Design space estimation and setpoint analysis

https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/education-training/webinars

*

*

New Courses material

Design of Experiments (DOE) – Web Course \$2,000.00

Date /Location/ Language

8 March 2021 - Web Course (CET) - English
8 March 2021 - Web Course (CET) - English
23 March 2021 - Web Course US (EST) - English
18 May 2021 - Web course Tokyo - English

- 2 day (4 web sessions)
- Visit https://webshop.umetrics.com

https://webshop.umetrics.com/collections/courses

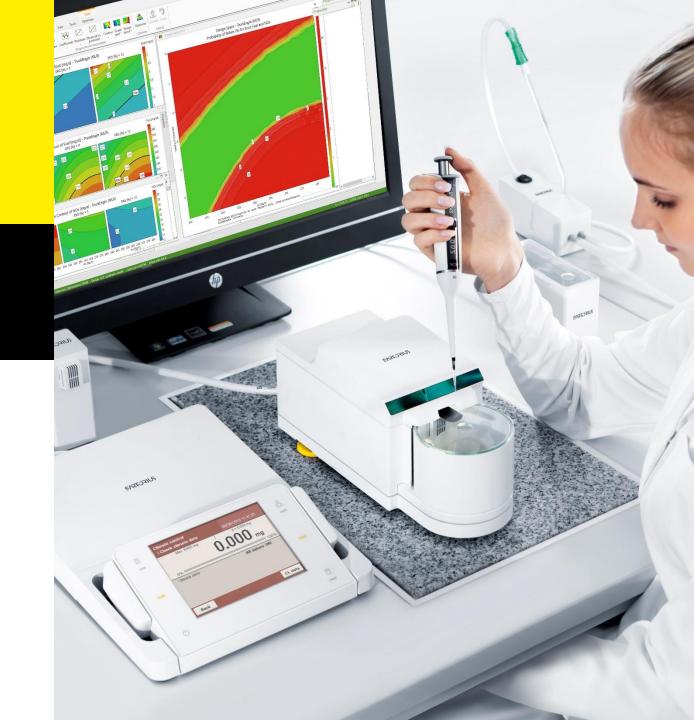
Quality by Design (QBD) and Design Space – Web Course

\$2,700.00

Date /Location/ Language

8 March 2021 - Web Course (CET)- English 🗘

2 + 1 day (4 + 2 web sessions)



SVIDENCE

Simplifying Progress

MODDE[®] 13 – What's New?

Release March 2, 2021

MODDE[®] 13 Overview

- Umetrics[®] suite MODDE[®] is focused on delivering a full design of experiment solution, from creating an investigation plan to analyze results and support decision making base on scientific principles.
- MODDE[®] 13 is focused on improving Design Selection and making Optimization easier and more powerful.
- With MODDE[®] 13 you get the new Optimization Wizard that complements the reworked Design Wizard and updated Analysis Wizard.
- The most frequently used functions and customizations can now be accessed in the Properties pane making it easier than ever to succeed with design of experiments.

MODDE[®] 13 Highlights

- Design Selection
 - New response Objectives and Conditions
 - Factor setting for Normal Operating Range
 - Detailed design Power per factor and response
 - Optimal selection of replicated design points
 - Interactive design selection view
 - New investigation objectives
- Model and Analysis
 - Model verification in Analysis Wizard
 - Visualization of desirability

Optimization

- Optimization Wizard
- Optimization within design space
- Setpoint comparison
- Other Improvements
 - Access to most used functions in new Properties panes
 - Define favorite setpoint
 - Create new plot with existing settings for contour like plots
 - Performance

Simplifying Progress

MODDE[®] 13 What's New Design Selection

SVIDUL

Design Selection

Design Wizard – Investigation Objective

- Screening, first stage of an investigation when little is known
- System characterization, investigate the influence of the most influential factors, including their two-factor interactions and quadratic effects
- Optimization (RSM), optimization using the most influential factors and focus on low prediction error
- Robustness verification, investigate the system's sensitivity to changes in certain critical factors

Design Wizard - Responses definition dialog

Condition - importance of response

- Required responses are quality attributes with hard limits that must be fulfilled. They define sweet spot, design space and are used in robust setpoint calculations
- Desired responses are influencing optimal setpoint
- Observed responses are predicted but do not influence design space or optimization
- Objective what you want to do with the response.
 - Minimize the response, often with max limit
 - Maximize the response, often with min limit
 - Target set the response close to a value
 - Inside, not influencing optimal setpoint
- Power to detect a coefficient as significant
 - Signal to noise ratio

🕸 De	sign Wizard											×
	Objectiv	re 📏	Respo	nses	- Fa	ctors	S e	lect design	>	Summa	ary	
	Define	responses (D									
	Name	Abbreviation	Units	Condition	Objective	Min	Target	Max	Predicted min	Predicted	max	R
1	Titer	Titer	mg/l	Required 🗸	Maximize 🐱	350	400					
2	VCC	VCC		Required 🗸	Maximize 🗸	4	4.5					
3	Viability	Via	%	Required 🗸	Maximize 🗸	70	100					
+	Add											
											1	
				Response	Definition				?	×		
				Response r	ame: Titer		Jnits: mg/l					
				izesponse i		:	<u>und</u>					
				<u>A</u> bbreviatio	on: Titer							
				Settings	Power Transf	orm Scaling						
				Dechang	e type: Req	un l paris	-1 0					
				Respons	e type. Reg	ular Deriv	ea 🔍					
				Respon	se optimizatio	n settings:						
				<u>C</u> ondit	ion: Desir	ed	/ ()					
<				Object	ive: Maxir	nize	/ ()					>
	New	Edit	Delete								Respon	ses: 3
				<u>M</u> in:		arget:	M <u>a</u> x:					
				350	4	100					He	lp
								OK	Car	ncel		

Design Selection

Design Wizard - Factor definition dialog

- Precision is the uncertainty in measurement of the factor setting
 - If set, it complements the prediction uncertainty range in Design Space estimation and Setpoint Exploration estimation
- Normal Operating Range, NOR, is defined as the common range during daily use of the application
 - Use the model to simulate response distributions
 - NOR can be used in Setpoint Comparison and Setpoint Exploration

Des	sign Wizard											×
	Objective	\rightarrow	Response	es 🔶	Factor	s		Select desig	n 🗲	Sum	mary	
	Define fa	ctors 🛈										
				-			c					
	Name	Abbreviation		Туре	Use		Settings	2				
1	Media	Med		Qualitative ~ Quantitative ~			lix 1, Mix 2, Mix 2 to 37	3				
2 3	Temperature pH	pH		Quantitative v			2 to 37 .8 to 7					
3 +	Add	рн		Quantitative v	Controlled	~ 0	.8 10 7					
	Auu											
				Factor De	finition				? ×]		
				Tactor De								
				Eactor nan	ne: Temperatu	ire	Units: °C					
				Abbreviati	on: Temp							
				General	Transform Sci	aling	Precision					
				No. of	decimals:		Free ~					
							0.0	_				
				Factor	precision:		± 0.2	0				
				Norma	al operating rang	e:	± 1	0				
	New E	dit	Delete								Fact	ors: 3
P	lace constraints o	n the experimen	tal region ()									
			- 0									
										Close	He	lp
_												
								ЭК 🛛	Cancel			

Design Selection

Design Wizard - Select Design

- Requirements
 - Used to filter the design alternatives
 - Max number of runs, Design Power and Degrees of freedom
 - Model complexity
- Design options for selected design
 - Replicated runs, add best replicated design points
 - Edit model of a design
 - Add to comparison to add the current design to Compare designs section
- Other improvements
 - Create D-Optimal design directly from select design page
 - Detailed Power for each factor and response combination
 - Sort design on Design power or I-optimality

Design	Total runs	Design runs	DF Model	Power	Condition	—— Requireme Max runs:	ents 24	
▲ Recommended designs						Min power:	1	_
tac (Mixed)	24	12	2 Interaction	90	1.73	Min DF:	2	
Reduced Combinatorial	16	13-+	3 Interaction	56	2.45	Model: Interactio		
🗊 D-Optimal	16	13-+	4 Interaction	60	2.07	Design runs:	12	~
▲ Criteria not met						Center points:	0	÷
🕸 Full Fac (3 levels)	30	27	18 Interaction	91	2.45	Replicated runs:	0	
🗉 L18 (3 levels)	21	18	14 Linear	81	2.12	Repeated design:	1	•
🖂 L36 (3 levels)	39	36	32 Linear	99	1.94	Edit model: Inter	action	
🗊 D-Optimal	11	8-+	4 Linear	39	2.13			
도L9 (3 levels)	12	9	5 Linear	41	2.45	Summary Detailed power Total runs: Degrees of free Model: Residuals: Lack of fit:	24	ison

Simplifying Progress

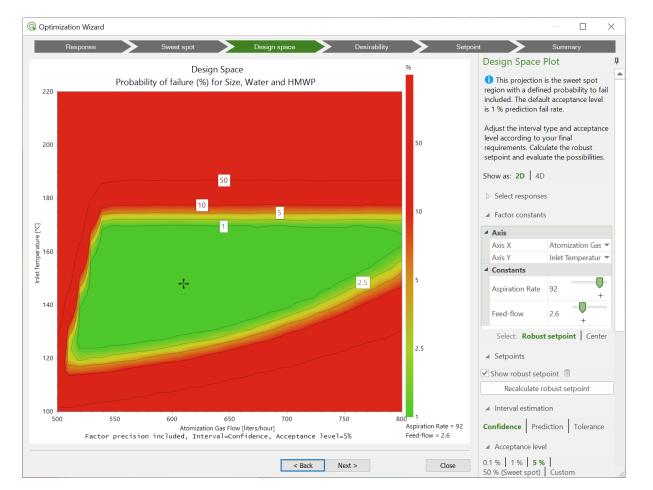
MODDE[®] 13 What's New Optimization

SVIDUL

Optimization Wizard - Inspect Response Settings

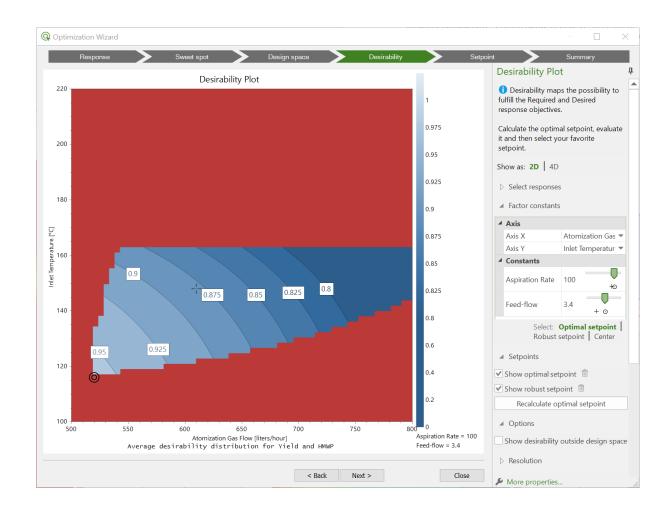

- Verify that response Condition, Objective and limits are set correctly
- Response condition, objective and limits are automatically fetched from the response definition. Green values are tooltips that indicate the range of values valid when considering the model
- Set desirability type
 - Target, reach a solution close to target
 - Limit, reach a solution within limits
- Weight can be used to limit the influence of some responses in order to find a compromise between many.

Re	esponse			Sweet s	pot	>	Design space		Desirability			Setpoint	Summary
Name	Conditio	n	Objective	Min	Target	Max	Predicted min	Predicted max	Response range	Desirability	type D	esirability weight	Review response settings
Yield	Desired	~ 1	Maximize 🗸	6.06249	62.1875		6.06249	62.1875		Target	~	1	 The optimization wizard result
Size	Required	~ I	nside 🗸	0.5	2	3.5	1.55024	4.25312		Limit	~	1	depends on how well the Condition
Water	Required	~ I	nside 🗸			3.5	2.01118	4.98619		Limit	~	1	and Objective specifications match predicted min and max ranges for
Outlet Tem	observed	- F	Predicted 🐱				50.7698	146.27		Limit	~	1	response.
HMWP	Required	~ 1	Minimize 🖌		0.2	1	0.306471	1.98813		Target	~	1	▲ ♀ About this list
													Compare your specified Min and N with the predicted min and predict max. The predicted values are the minimal and maximum values that be achieved by the respective mod The likelihood of finding a design
													space increases when there is a big overlap of the desired range (differ Max - Min) and the achievable value (difference Predicted max - Predicte min).
													space increases when there is a big overlap of the desired range (differ Max - Min) and the achievable value (difference Predicted max - Predicte
													space increases when there is a big overlap of the desired range (differ Max – Min) and the achievable value (difference Predicted max - Predicte min). The response range column is the graphical representation of the rela between specified Min, Max and Predicted min, Predicted max. The white area represents the overlap, t

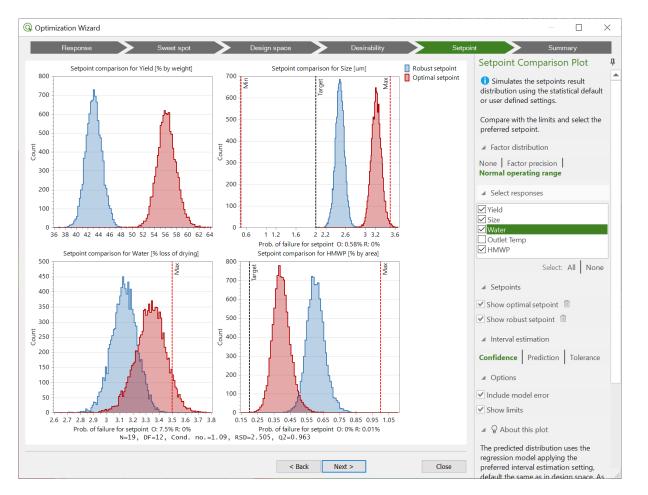

Optimization Wizard - Sweet spot

- Automatically sets factor constants to display the largest sweet spot.
- When no sweet spot can be found there is guidance in pane to the right
- Sweet spot plot is shown when there is at least one response with Condition: Required

Optimization Wizard - Design Space

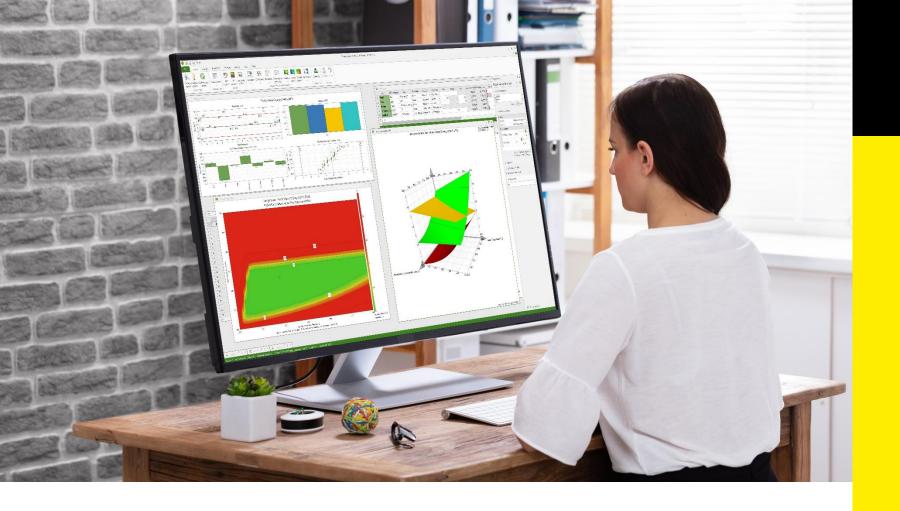

- Calculate the robust setpoint by clicking "Find robust setpoint"
 - Factor constants are adjusted to match the robust setpoint
 - Robust setpoint is marked by a crosshair
- Customization of Design Space calculation in the properties pane
- When no Design Space can be found, there is guidance in pane to the right

Optimization Wizard - Desirability


- Interpreting the desirability plot:
 - Red: outside the design space
 - Blue: inside the design space. The lighter the blue, the higher the desirability
- Calculate optimal setpoint by clicking "find optimal setpoint"
 - Factor constants are adjusted to match the optimal setpoint
 - Optimal setpoint is marked by a double circle
- When Design Space can be found there is guidance in pane to the right

Optimization Wizard - Setpoint Comparison

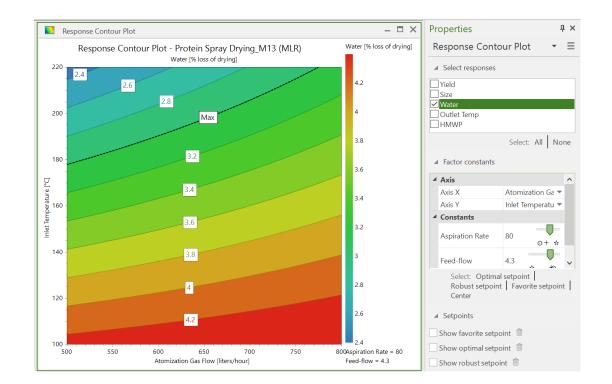
- Compare predicted distribution of selected responses. Can be used to simulate future process output
- Probability of failure for each setpoint for all responses with Objective: Required
- Adjustment of factor distribution and Interval estimation settings in pane



Optimization Wizard – Summary

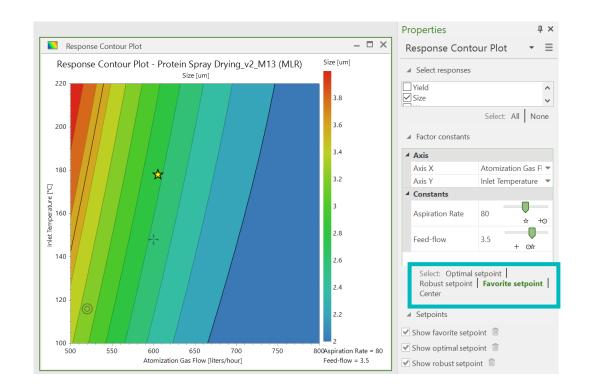
- Summary of setpoint characteristics
 - Response settings
 - Factor settings
 - Predicted value
 - Probability of failure
 - Cpk
- Proven acceptable range calculated for robust setpoint
 - Robust low/high edge
 - Hypercube low/high edge

Resp	onse		Swe	eet spot		Design space	Desirability	Setp	pint	Summa	у
ptimal setpo	int										
robability of fa	ilure: 4.89	6 (interval:	Confider	nce)							
Response	Value	Unit		Prob.of failure	Cpk						
Yield	56.196	% by we	ight								
Size	3.220	um		0.16%	1.081						
Water	3.338	% loss of	f drying	4.7%	0.550						
Outlet Temp	79.170	°C									
HMWP	0.393	% by are	a	0%	3.689						
Factor		Value	Unit								
Inlet Tempera	turo	116.000	°C								
Atomization G		520.000	liters/h	our							
Aspiration Rat		100.000	%	loui							
Feed-flow	e	3.400	ml/min								
robability of fa			al: Confic								
Response	Value	Unit		Prob.of failure	Cpk						
Yield	43.146	% by we	ight								
Size	2.487	um		0%	4.008						
Water	3.136	% loss of	f drying	0.005%	1.740						
Outlet Temp	97.540	°C									
HMWP	0.603	% by are	a	0%	2.401						
Factor		Value	Unit	Robust lov	v edge	Robust high edge	Hypercube low edge	Hypercube high edge			
racior	ture	148.000	°C	124.000		172.000	140.000	164.000			
Inlet Tempera	ias Flow	610.000	liters/h	our 540.000		780.000	540.000	640.000			
		92.000	%	84.000		100.000	89.333	97.333			
Inlet Tempera	e						2.000	3.000			
Inlet Tempera Atomization G	e	2.600	ml/min	2.000		4.000	2.000	3.000			

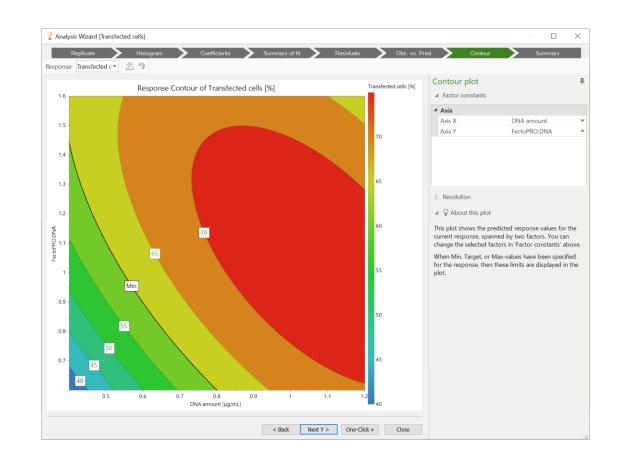

Simplifying Progress

MODDE[®] 13 What's New Features and improvements

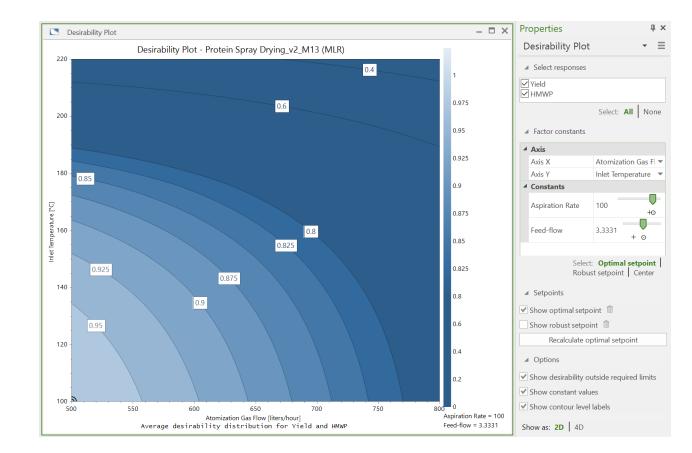
User interface


- Properties pane with most used settings
 - Available for all plots
 - Select or deselect responses
 - Select axis and adjust constants with slide bars
 - Specific settings for current contour plot are available and alternatives can be activated by point and click
- Right-click any contour plot and select "... from this" creates the selected sweet spot, contour plot desirability or design space plot with the current axis and constant settings

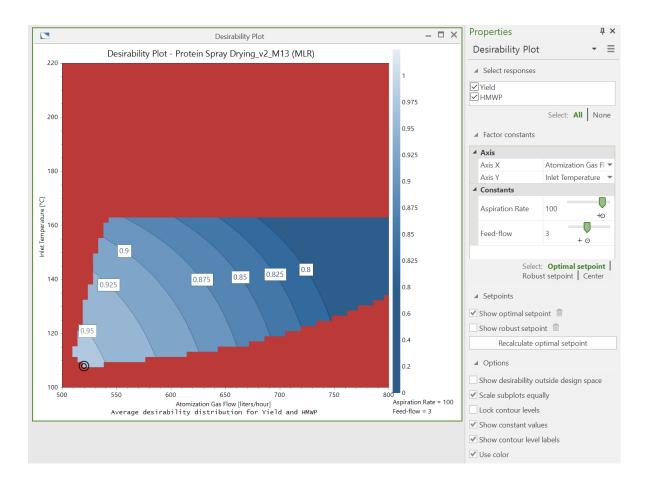
Robust, Optimal, and Favorite setpoint


- MODDE 13 has three different setpoints and can be used in all types of 2D and 4D contour plots
- Robust setpoint crosshair symbol
 - Calculate in design space plot and optimizer
- Optimal setpoint double circle symbol
 - Calculate in Desirability plot or optimizer
- Favorite setpoint identified by star symbol
 - Position your own favorite setpoint (right-click, Set as favorite setpoint)
- Select factor constants by clicking a setpoint in Properties pane
- When factor constants don't match exactly for a setpoint, that setpoint symbol is displayed in grey

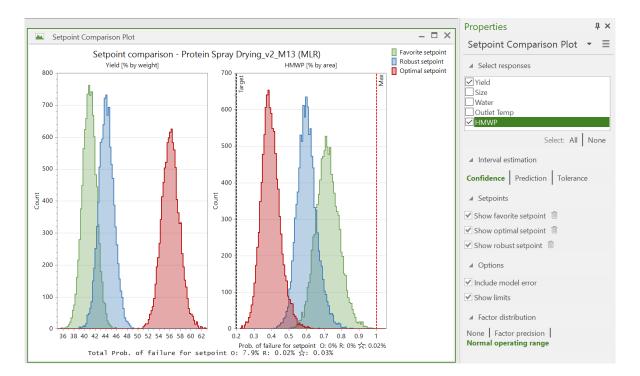
Analysis Wizard


- Contour plot added in Analysis wizard for model verification by user
 - Is the model in line with expectations and prior knowledge
- 4D contour plot available, customize axis in properties pane
- Improved Interaction test-dialog for reduced factorial designs

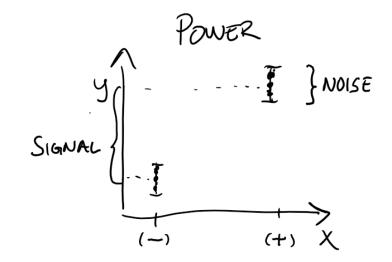
Desirability plot


- The desirability plot shows how well the response objectives are fulfilled
 - Visualization of desirability function
 - Used to identify optimal setpoint
 - Find optimal setpoint function in properties pane to identify the optimal setpoint
 - Combine with sweet spot or design space if there are required responses

Optimization within design space


- When a design space has been calculated, MODDE can identify the factor combination with the best desirability within the design space.
 - Optimal setpoint marked with double circle symbol
 - For full view of desirability, select "Show desirability outside of design space" in Properties pane
 - Create desirability plot from a sweet spot plot to calculate optimal point inside the Sweet spot.

Setpoint comparison


- Setpoint comparison plot shows histograms of simulated process output profiles based on factor distribution
- All defined setpoints can be visualized in the same histogram
- Total Probability of failure and individual for each response are shown for selected setpoints
- Normal Operating Range, NOR, is the default setting

Design Wizard - Detailed power in Responses definition dialog

- A measure of the DOE's ability to detect an effect as significant. Power is expressed in percent.
- Ratio between expected noise and the size of the effect to be detected
- Intended mainly for screening investigations
- MODDE provides detailed power for each factor per response

1	2	3	4	5	6	7	8	9	10	11	12
Name	Unit	Signal to det	Noise/std. de	S/N ratio	Alpha level	L/h	ms	cm	L/h*ms	L/h*cm	ms*cm
Yeild	mg/l	4	2	2	0.05	81.5326	81.5326	81.5326	81.5326	81.5326	81.5326
Lange States											
Impurity	ug/L	40	5	8	0.05	100	100	100	100	100	100
Impurity	ug/L	40	5	8	0.05	100	100	100	100	100	100

Design Wizard - Optimal selection of replicated design points

- Repeated design creates a DOE with 22 experiments and Power of 96
- Add replicated design runs to create a DOE with sufficient power
 - Original design (full fac) : 11 runs Power 57
 - Repeated design : 22 runs Power 92
 - Optimal replicated runs :15 runs Power 82

Design	Total runs	Design runs	DF Model	Power 🔻 Cond	ition num	—— Requirements —— Max runs:
✓ Compare designs						Min power: 80
≩ Full Fac (2 levels)	22	8	2 Interaction	96	1.17 Remove	Min DF: 1
⊉ Full Fac (2 levels)	15	8	2 Interaction	82	1.41 Remove	Model: Interaction
⊉ Full Fac (2 levels)	11	8	2 Interaction	57	1.17 Remove	Design options Design runs: 8
▲ Criteria not met						Center points: 3
L18 (3 levels)	21	18	15 Linear	90	1.32	Replicated runs: 4
🗉 Plackett Burman	11	8+	5 Linear	68	1.17	Repeated design: 0
] D-Optimal	13	10-+	4 Interaction	66	1.32	Edit model: Interaction
EL9 (3 levels)	12	9	6 Linear	58	1.41	Blocks: 1 ~
ត្ថ Full Fac (2 levels)	11	8	2 Interaction	57	1.17	Block interactions
D-Optimal	10	7-+	4 Linear	57	1.54	Reset Add to comparison
া Rechtschaffner Res V	10	7	1 Interaction	32	2.86	—— Summary —— Detailed power
₿ Frac Fac Res III	7	4	1 Linear	29	1.32	Total runs: 15
다 L36 (3 levels)	39	36	33 Linear	100	1.27	Degrees of freedom
						Model: 2
						Residuals: 8
						Lack of fit: 2

Thank You for Your Interest in MODDE® 13

Don't forget to check out the instructional videos in Sartorius Data Analytics YouTube channel

SVIDUL