
Building the Stream 
Figure 1. Modeling stream 

 

To build a stream that will create a model, we need at least three elements:  

� A source node that reads in data from some external source 
� A source or Type node that specifies field properties, such as measurement level (the 

type of data that the field contains), and the role of each field as a target or input in 
modeling. 

� A modeling node that generates a model nugget when the stream is run.  

In this example, we’re using a CHAID modeling node. CHAID, or Chi-squared Automatic 
Interaction Detection, is a classification method that builds decision trees by using a particular 
type of statistics known as chi-square statistics to work out the best places to make the splits 
in the decision tree. 

If measurement levels are specified in the source node, the separate Type node can be 
eliminated. Functionally, the result is the same. 

This stream also has Table and Analysis nodes that will be used to view the scoring results 
after the model nugget has been created and added to the stream.  

The Statistics File source node reads data in IBM SPSS Statistics format from the tree_credit 
data file, which is installed in the Demos folder.  

  



Figure 2. Reading data with a Statistics File source node 

 

The Type node specifies the measurement level for each field. The measurement level is a 
category that indicates the type of data in the field. Our source data file uses three different 
measurement levels.  

A Continuous field (such as the Age field) contains continuous numeric values, while a 
Nominal field (such as the Credit rating field) has two or more distinct values, for example 
Bad, Good, or No credit history. An Ordinal field (such as the Income level field) describes 
data with multiple distinct values that have an inherent order—in this case Low, Medium and 
High. 

Figure 3. Setting the target and input fields with the Type node 

 
  



For each field, the Type node also specifies a role, to indicate the part that each field plays in 
modeling. The role is set to Target for the field Credit rating, which is the field that indicates 
whether or not a given customer defaulted on the loan. This is the target, or the field for 
which we want to predict the value.  

Role is set to Input for the other fields. Input fields are sometimes known as predictors, or 
fields whose values are used by the modeling algorithm to predict the value of the target field.  

The CHAID modeling node generates the model.  

On the Fields tab in the modeling node, the option Use predefined roles is selected, which 
means the target and inputs will be used as specified in the Type node. We could change the 
field roles at this point, but for this example we'll use them as they are. 

Figure 4. CHAID modeling node, Fields tab 

 

We also just want a single, standard decision tree model without any enhancements, so we'll 
also leave the default objective option Build a single tree. 

While we can optionally launch an interactive modeling session that allows us to fine-tune the 
model, this example simply generates a model using the default mode setting Generate model. 

 

 



 

 

Figure 5. CHAID modeling node, Build Options tab 

 

For this example, we want to keep the tree fairly simple, so we'll limit the tree growth by 
raising the minimum number of cases for parent and child nodes. 

1. On the Build Options tab, select Stopping Rules from the navigator pane on the left. 
2. Select the Use absolute value option. 
3. Set Minimum records in parent branch to 400. 
4. Set Minimum records in child branch to 200. 

 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6. Setting the stopping criteria for decision tree building 
 

 
 

 
Browsing the Model 
When execution completes, the model nugget is added to the Models palette in the upper right 
corner of the application window, and is also placed on the stream canvas with a link to the 
modeling node from which it was created. To view the model details, right-click on the model 
nugget and choose Browse (on the models palette) or Edit (on the canvas). 

Figure 1. Models palette 

 



In the case of the CHAID nugget, the Model tab displays the details in the form of a rule set--
essentially a series of rules that can be used to assign individual records to child nodes based 
on the values of different input fields.  

Figure 2. CHAID model nugget, rule set 

 

For each decision tree terminal node--meaning those tree nodes that are not split further--a 
prediction of Good or Bad is returned. In each case the prediction is determined by the mode, 
or most common response, for records that fall within that node. 

To the right of the rule set, the Model tab displays the Predictor Importance chart, which 
shows the relative importance of each predictor in estimating the model. From this we can see 
that Income level is easily the most significant in this case, and that the only other significant 
factor is Number of credit cards. 

Figure 3. Predictor Importance chart

 



The Viewer tab in the model nugget displays the same model in the form of a tree, with a 
node at each decision point. Use the Zoom controls on the toolbar to zoom in on a specific 
node or zoom out to see the more of the tree. 

Figure 4. Viewer tab in the model nugget, with zoom out selected 

 

Looking at the upper part of the tree, the first node (Node 0) gives us a summary for all the 
records in the data set. Just over 40% of the cases in the data set are classified as a bad risk. 
This is quite a high proportion, so let’s see if the tree can give us any clues as to what factors 
might be responsible. 

We can see that the first split is by Income level. Records where the income level is in the 
Low category are assigned to Node 2, and it’s no surprise to see that this category contains the 
highest percentage of loan defaulters. Clearly lending to customers in this category carries a 
high risk.  

However, 16% of the customers in this category actually didn’t default, so the prediction 
won’t always be correct. No model can feasibly predict every response, but a good model 
should allow us to predict the most likely response for each record based on the available data. 

In the same way, if we look at the high income customers (Node 1), we see that the vast 
majority (89%) are a good risk. But more than 1 in 10 of these customers has also defaulted. 
Can we refine our lending criteria to minimize the risk here?  

Notice how the model has divided these customers into two sub-categories (Nodes 4 and 5), 
based on the number of credit cards held. For high-income customers, if we lend only to those 



with fewer than 5 credit cards, we can increase our success rate from 89% to 97%--an even 
more satisfactory outcome. 

 
 
 
Figure 5. Tree view of high-income customers 

 
 

But what about those customers in the Medium income category (Node 3)? They’re much 
more evenly divided between Good and Bad ratings.  

Again, the sub-categories (Nodes 6 and 7 in this case) can help us. This time, lending only to 
those medium-income customers with fewer than 5 credit cards increases the percentage of 
Good ratings from 58% to 85%, a significant improvement. 

Figure 6. Tree view of medium-income customers 

 

So, we’ve learnt that every record that is input to this model will be assigned to a specific 
node, and assigned a prediction of Good or Bad based on the most common response for that 
node.  



This process of assigning predictions to individual records is known as scoring. By scoring 
the same records used to estimate the model, we can evaluate how accurately it performs on 
the training data—the data for which we know the outcome. Let’s look at how to do this. 

Evaluating the Model 
We've been browsing the model to understand how scoring works. But to evaluate how 
accurately it works, we need to score some records and compare the responses predicted by 
the model to the actual results. We're going to score the same records that were used to 
estimate the model, allowing us to compare the observed and predicted responses. 

Figure 1. Attaching the model nugget to output nodes for model evaluation 

 

1. To see the scores or predictions, attach the Table node to the model nugget, double-
click the Table node and click Run.  

The table displays the predicted scores in a field named $R-Credit rating, which was 
created by the model. We can compare these values to the original Credit rating field that 
contains the actual responses.  

By convention, the names of the fields generated during scoring are based on the target 
field, but with a standard prefix. Prefixes $G and $GE are generated by the Generalized 
Linear Model, $R is the prefix used for the prediction generated by the CHAID model in 
this case, $RC is for confidence values, $X is typically generated by using an ensemble, 
and $XR, $XS, and $XF are used as prefixes in cases where the target field is a 
Continuous, Categorical, Set, or Flag field, respectively. Different model types use 
different sets of prefixes. A confidence value is the model’s own estimation, on a scale 
from 0.0 to 1.0, of how accurate each predicted value is. 

 

 

 

 



 

Figure 2. Table showing generated scores and confidence values 

 

As expected, the predicted value matches the actual responses for many records but not all. 
The reason for this is that each CHAID terminal node has a mix of responses. The prediction 
matches the most common one, but will be wrong for all the others in that node. (Recall the 
16% minority of low-income customers who did not default.)  

To avoid this, we could continue splitting the tree into smaller and smaller branches, until 
every node was 100% pure—all Good or Bad with no mixed responses. But such a model 
would be extremely complicated and would probably not generalize well to other datasets. 

To find out exactly how many predictions are correct, we could read through the table and 
tally the number of records where the value of the predicted field $R-Credit rating matches 
the value of Credit rating. Fortunately, there’s a much easier way--we can use an Analysis 
node, which does this automatically. 

2. Connect the model nugget to the Analysis node. 
3. Double-click the Analysis node and click Run. 

 
 
 
 
 
 
 
 
 



 
Figure 3. Attaching an Analysis node 
 

 

The analysis shows that for 1899 out of 2464 records--over 77%--the value predicted by the 
model matched the actual response.  

Figure 4. Analysis results comparing observed and predicted responses 
 

 

This result is limited by the fact that the records being scored are the same ones used to 
estimate the model. In a real situation, you could use a Partition node to split the data into 
separate samples for training and evaluation. 

By using one sample partition to generate the model and another sample to test it, you can get 
a much better indication of how well it will generalize to other datasets.  



The Analysis node allows us to test the model against records for which we already know the 
actual result. The next stage illustrates how we can use the model to score records for which 
we don't know the outcome. For example, this might include people who are not currently 
customers of the bank, but who are prospective targets for a promotional mailing.  

Scoring Records 
Earlier, we scored the same records used to estimate the model in order to evaluate how 
accurate the model was. Now we're going to see how to score a different set of records from 
the ones used to create the model. This is the goal of modeling with a target field: Study 
records for which you know the outcome, to identify patterns that will allow you to predict 
outcomes you don't yet know.  

 

Figure 1. Attaching new data for scoring  

 

You could update the Statistics File source node to point to a different data file, or you could 
add a new source node that reads in the data you want to score. Either way, the new dataset 
must contain the same input fields used by the model (Age, Income level, Education and so 
on) but not the target field Credit rating. 

Alternatively, you could add the model nugget to any stream that includes the expected input 
fields. Whether read from a file or a database, the source type doesn't matter as long as the 
field names and types match those used by the model. 

You could also save the model nugget as a separate file, export the model in PMML format 
for use with other applications that support this format, or store the model in an IBM® 
SPSS® Collaboration and Deployment Services repository, which offers enterprise-wide 
deployment, scoring, and management of models.  

Regardless of the infrastructure used, the model itself works in the same way.  

  



 

Summary 
This example demonstrates the basic steps for creating, evaluating, and scoring a model.  

� The modeling node estimates the model by studying records for which the outcome is 
known, and creates a model nugget. This is sometimes referred to as training the 
model.  

� The model nugget can be added to any stream with the expected fields to score 
records. By scoring the records for which you already know the outcome (such as 
existing customers), you can evaluate how well it performs.  

� Once you are satisfied that the model performs acceptably well, you can score new 
data (such as prospective customers) to predict how they will respond. 

� The data used to train or estimate the model may be referred to as the analytical or 
historical data; the scoring data may also be referred to as the operational data.  

 


